Commutative Algebra chapter II


                                         Chapter –II

                                                MODULES
                                          
            In this chapter a ring R will always mean a commutative ring with element 1.

Definition :2.1
            An R module M is an abelian  group M together with a map
 R given  by (a,x) à a.x , satisfying the following conditions.
                             i.          a .(x+y) = a. x  + a.y    a Є R , x , yЄ M.
                           ii.           (a+b) .x = a.x + b.x       a,b Є R , x Є M.
                         iii.          a.(b.x) =(ab) . x              a.b Є  R, x Є M.
                         iv.          1. x  = x,     x Є M
We denote  a .x by ax.
Examples :2.2
(i)            Any  vector space V over  a field K is a K –module.
(ii)          Any abelian group  G is a  Z –module.
Definition:2.3
                A Subset N
 M is called a submodule, if N is a subgroup of the abelian group M and a x Є N  for all a Є R and x Є N.
Examples:2.4
       (i)  Any subspace W of a vector space V is a submodule.
(ii)          All polynomials of degree atmost n is a submodule of the
R-module R[x].
(iii)        The modules O and M are submodule of M called improper submodules.
Definition :2.5
          Let M and N be R-module . A  map : Mà N is called a homomorphism of  R – module  if  
(x+y) = (x) + (y)     , x, y Є M.
  (ii) (ax) = a  (x) ,  a Є R , x Є M.
Examples :2.6
(I)           For any fixed a Є R ,the  map : MàM given by (x) = ax, is a homomorphism.
(II)         For any submodule  N of M ,the inclusion map  :N àM defined  by  (x)=x , x Є N is a homomorphism.

Definition :2.7
            Let N be a submoldule of M. Consider  the quotient abelian group M/N with the scalar multiplication given  by
      a.(x  + N) =ax +N , a Є R , x Є M.
     Then M/N is an R module called the quotient module M/N.
Definition :2.8
          A homomorphism  of modules which is both (1,1) (injective) and onto (surjective) is called an isomorphism.
 Definition :2.9
          The map p : M à M/N defined by p(x) = x+ N ,x Є M is a homomorphism of modules called the projection.
Result :2.10
           Let N be a submodule of M . Then M/N is an R-module.
Proof
 Since  M is an abelion group and N is a submodule  of M
        M/N is a group
 To prove M/N is an abelian group
       
Let x+N, y+N   M/N x,y,
        (x+N)+(y+N)=x+y+N
                                   =y+x+N
                                   =(y+N)+(x+N)
                  M/N is .an abelian group
        Define µ  :A  M/N M/N by  µ (a,x+N) =ax+N =a(x+N)
                Let  a,b R,x+N, y+N  M/N.
a((x+N)+(y+N)) =a (x+y+N)
                 =a(x+y)+N.
                 =ax+ay+N.
                                                    =(ax+N)+(ay+N)
                  a((x+N)+(y+N) =a(x+N)+a(y+N).
                   (a+b).(x+N) = (a+b) x +N.
                                       =ax + bx+N.
                                       =ax+N +bx+N.
              (a+b.(x+N) =a(x+N) + b(x+N)
              (ab) (x+N) = ab.x+N.                 
                                     =a(bx+N)
              (ab) (x+N) = a(b(x+N))
                    1.(x+N) = 1.x+N =x+N
    M/N is an R-module
Result:2.11
            The natural map of M onto M/N is an R-module homomophism.

Proof:
            Define : M   M/N by  (x) = x+N    x M
To prove  is a R-module homomophism.
            Let  x, y M   
  =x +y+N 
                 = x+N+y+N
(x)+
                          (ax)=ax+N
                 =a(x+N)
                 =a (x).
 is an R-module homomophism.
To prove   is onto.
            For every x+N  M/N,  x M such  that  (x) =x+N.
             : M→ M/N is an onto R-module homomophism.
Theorem:2.12
            Let : M → N be a homomophism of M onto N. Then the kernel of  ={x  M / (x) =0}is a submodule K of M and the quotient module M/K isomorphic to N.
Proof:
            Kernel of  = K= {x  M / (x) = 0}.
    Let  x,y  ker .
   Then (x)  =0, (y) =0.
                To prove x+y    ker
x+y) = (x) +  (y)
                 =0+0
 (x+y) =0
x+y  ker
To prove –x  ker
 (-x) =  (-1.x)
           = -1. (x)
          = -1.0
 (-x) = 0
-x  ker .
Hence  ker  is a subgroup of M.
To prove ax  ker
      (ax) =  a f(x)
                  =a.0
      (ax) = 0
ax ker  .
Kernel of  is a submodule of M .
    Define the map  M/K→N by (x+K) = (x), x  M.
Claim :  is well – defined.
    Let x+K , y+K  M/K.
           x+K = y+K
  x –y + K = K
  x – y  K  =  ker
  (x-y)  = 0
  (x) – (y) = 0
  (x) =  (y)
   (x+K) =  (y+K)
is well – defined and 1 – 1.
Claim: is  a homomorphism.
((x+K) + (y+K))  =  (x+y+K)
                                       =  (x+y)
                                       =  (x) + f (y)
                                       =  (x+K) + (y+K).
(a(x+K)) = (ax+K)
                        =   (ax)
                         = a   (x+K).
 is a homomophism.
Hence    is an is homomorphism.

   M/K    N
Theorom:2.13
       i.          I   L  M N are R-modules , then
     ii.          I   M1,M2  are submodules of M, then M1+M2/M1  M2/M1  M2.

Proof:
           (i)Given L M N are R-modules
 Define  : L/N à L/M by (x+N) = x+M    x+N L/N.

To prove  is well – defined
            Let  x+N, y+N  L/N such that  x+N =y+N
   (x-y) +N =N
    x –y N  M
 x –y  M
x –y +M =M
 x + M =y+M
              (x+N) =  (y+N)
   is well- defined.
 is onto
            or every x +M  L/M ,   x+ N   L/N  such that
            (x+N) = x+M.
  is  onto.
To prove   is   an R-module  homomorphism.
            Let x+N  y+N  Є L/N , a Є R.

 ((x+N) + (y+N)) =  ((x+y) +N ))
                                        = x+ y+ M
                                        = (x+M) +(y+M)
 ((x+N) +(y+ N)) =  (x+N) +  (y+N)

 (a(x+ N)) =  (a x +N)
                         = ax +M
                         =a(x +M)
                         = a  (x+N)
 is  an R-module  homomorphism.
            Hence    is an R-module  homomorphism of L/N onto L/M.
Claim:  ker  = M/N.
       Now  x +N Є ker
   (x+N) =M
 x+M =M
 x Є M
x+N Є M/N.
 Ker  = M/N.
 By fundamental theorem of homomorphism

(iii)         : M2 à M1+M2/M1 defined by  (x) =x+M1 where x Є M2.
            Let x, y Є M2 such that   x = y
 x-y=0
   (x-y) =  (0) = M1
 x –y +M1 =M1
 x+M1 = y + M1
   (x) =  (y)
   is well –defined.
To prove  is onto
Let  z +M Є M1 + M2/M1
                  Then z Є  M1+M2.
                 z =z1+z2 where z1 Є M1 z2 Є M2.
            z2 = z- z1 and
           (z2) = z – z1 +M1  = z+M1
 z2 Є M2 such that  (z2) =z+M1
 is onto .
To prove  is an R-modules homomorphism
            Let x, yЄ M2 , a Є R
          (x+y) =x+y+M1
                         =(x+M1 +(y+M1)
 (x+y) =  (x)+  (y)
 (ax) = ax +M1
                          =a (x+M1)
                          =a  (x)

Hence  is an R-module homomorphism  of M2 onto M1+M2/M1.
Claim : ker  = M1 M2.
x Є Ker      (x) = 0, x Є M2
                      x +M1 = M1, x Є M2.
                x Є M1 , X Є M2.
                    x Є M1  M2.
Ker  = M1  M2
M2/M1 M2  M1+M2/M1
Note :
If N and K are submodules of M then N  K is a submodule of M but N  K is not in general a  submodule of M.
Definition:2.14
          The smallest submodules of M containing N  K is called the submodule generated by N and K.

Theorem:2.15
        The submodule S generated by N and K is a submodule
N+K ={x+y/x Є N, y Є K}
Proof:
Clearly N + K is a submodule of M since N and K  are  submodules of  M.
Also N N +K and K N+ K so that  S N +K.
Conversely, for any x Є N , y Є K , we have x,y Є S so that x + y Є S.
Thus  N + K S.
Hence  S = N+ K.

Corollary :2.16
              If N1, N2,……,NK  are  submodules of  M, the submodule generated by N1,N2,…..NK is equal to
/xi Є Ni } = N1 +N2 +……..NK .



Definition:2.17
         Let A be  a subset of M and is denoted by IA.
         In particular if I= R and A ={x}, IA is denoted by Rx.
Definition:2.18
         An R-module M is called cyclic if M = Rx  for some x Є M.
Theorem:2.19
     An R-module M is cyclic iff M R/I  for some ideal I in R.
Proof:
         Suppose M is cyclic
M =Rx for some  x Є M.
Define the natural map   : R à M by   (a) = ax .
clearly  is surjective.
To prove    is a homomorphism
                Let  a, b Є R
     (a+b) =(a+b) x
                    =ax+bx
    (a+b)  =  (a) +(b)
    (αa)      =(αa)x
                    =α(ax)
 (αa)         (a) ,α Є R.
 is a homomorpohism.
        Hence  is a surjective homomorphism.


Let  I =ker .
     By fundamental theorem of homomorphism, we have R/I  M.
Conversely suppose M  R/I.
Since R/I is generated by  = 1 +I, R/I is cyclic.
Since R/I  M, M is cyclic.

No comments:

PDF FILE TO YOUR EMAIL IMMEDIATELY PURCHASE NOTES & PAPER SOLUTION. @ Rs. 50/- each (GST extra)

HINDI ENTIRE PAPER SOLUTION

MARATHI PAPER SOLUTION

SSC MATHS I PAPER SOLUTION

SSC MATHS II PAPER SOLUTION

SSC SCIENCE I PAPER SOLUTION

SSC SCIENCE II PAPER SOLUTION

SSC ENGLISH PAPER SOLUTION

SSC & HSC ENGLISH WRITING SKILL

HSC ACCOUNTS NOTES

HSC OCM NOTES

HSC ECONOMICS NOTES

HSC SECRETARIAL PRACTICE NOTES

2019 Board Paper Solution

HSC ENGLISH SET A 2019 21st February, 2019

HSC ENGLISH SET B 2019 21st February, 2019

HSC ENGLISH SET C 2019 21st February, 2019

HSC ENGLISH SET D 2019 21st February, 2019

SECRETARIAL PRACTICE (S.P) 2019 25th February, 2019

HSC XII PHYSICS 2019 25th February, 2019

CHEMISTRY XII HSC SOLUTION 27th, February, 2019

OCM PAPER SOLUTION 2019 27th, February, 2019

HSC MATHS PAPER SOLUTION COMMERCE, 2nd March, 2019

HSC MATHS PAPER SOLUTION SCIENCE 2nd, March, 2019

SSC ENGLISH STD 10 5TH MARCH, 2019.

HSC XII ACCOUNTS 2019 6th March, 2019

HSC XII BIOLOGY 2019 6TH March, 2019

HSC XII ECONOMICS 9Th March 2019

SSC Maths I March 2019 Solution 10th Standard11th, March, 2019

SSC MATHS II MARCH 2019 SOLUTION 10TH STD.13th March, 2019

SSC SCIENCE I MARCH 2019 SOLUTION 10TH STD. 15th March, 2019.

SSC SCIENCE II MARCH 2019 SOLUTION 10TH STD. 18th March, 2019.

SSC SOCIAL SCIENCE I MARCH 2019 SOLUTION20th March, 2019

SSC SOCIAL SCIENCE II MARCH 2019 SOLUTION, 22nd March, 2019

XII CBSE - BOARD - MARCH - 2019 ENGLISH - QP + SOLUTIONS, 2nd March, 2019


BUY FROM PLAY STORE

DOWNLOAD OUR APP


HOW TO PURCHASE OUR NOTES?



S.P. Important Questions For Board Exam 2020


O.C.M. Important Questions for Board Exam. 2020


Economics Important Questions for Board Exam 2020


Chemistry Important Question Bank for board exam 2020


Physics – Section I- Important Question Bank for Maharashtra Board HSC Examination


Physics – Section II – Science- Important Question Bank for Maharashtra Board HSC 2020 Examination


MUST REMEMBER THINGS on the day of Exam


Are you prepared? for English Grammar in Board Exam.


Paper Presentation In Board Exam


How to Score Good Marks in SSC Board Exams


Tips To Score More Than 90% Marks In 12th Board Exam


How to write English exams?


How to prepare for board exam when less time is left


How to memorise what you learn for board exam


No. 1 Simple Hack, you can try out, in preparing for Board Exam

How to Study for CBSE Class 10 Board Exams Subject Wise Tips?

JEE Main 2020 Registration Process – Exam Pattern & Important Dates

NEET UG 2020 Registration Process Exam Pattern & Important Dates

How can One Prepare for two Competitive Exams at the same time?

8 Proven Tips to Handle Anxiety before Exams!