Commutative Algebra chapter II


                                         Chapter –II

                                                MODULES
                                          
            In this chapter a ring R will always mean a commutative ring with element 1.

Definition :2.1
            An R module M is an abelian  group M together with a map
 R given  by (a,x) à a.x , satisfying the following conditions.
                             i.          a .(x+y) = a. x  + a.y    a Є R , x , yЄ M.
                           ii.           (a+b) .x = a.x + b.x       a,b Є R , x Є M.
                         iii.          a.(b.x) =(ab) . x              a.b Є  R, x Є M.
                         iv.          1. x  = x,     x Є M
We denote  a .x by ax.
Examples :2.2
(i)            Any  vector space V over  a field K is a K –module.
(ii)          Any abelian group  G is a  Z –module.
Definition:2.3
                A Subset N
 M is called a submodule, if N is a subgroup of the abelian group M and a x Є N  for all a Є R and x Є N.
Examples:2.4
       (i)  Any subspace W of a vector space V is a submodule.
(ii)          All polynomials of degree atmost n is a submodule of the
R-module R[x].
(iii)        The modules O and M are submodule of M called improper submodules.
Definition :2.5
          Let M and N be R-module . A  map : Mà N is called a homomorphism of  R – module  if  
(x+y) = (x) + (y)     , x, y Є M.
  (ii) (ax) = a  (x) ,  a Є R , x Є M.
Examples :2.6
(I)           For any fixed a Є R ,the  map : MàM given by (x) = ax, is a homomorphism.
(II)         For any submodule  N of M ,the inclusion map  :N àM defined  by  (x)=x , x Є N is a homomorphism.

Definition :2.7
            Let N be a submoldule of M. Consider  the quotient abelian group M/N with the scalar multiplication given  by
      a.(x  + N) =ax +N , a Є R , x Є M.
     Then M/N is an R module called the quotient module M/N.
Definition :2.8
          A homomorphism  of modules which is both (1,1) (injective) and onto (surjective) is called an isomorphism.
 Definition :2.9
          The map p : M à M/N defined by p(x) = x+ N ,x Є M is a homomorphism of modules called the projection.
Result :2.10
           Let N be a submodule of M . Then M/N is an R-module.
Proof
 Since  M is an abelion group and N is a submodule  of M
        M/N is a group
 To prove M/N is an abelian group
       
Let x+N, y+N   M/N x,y,
        (x+N)+(y+N)=x+y+N
                                   =y+x+N
                                   =(y+N)+(x+N)
                  M/N is .an abelian group
        Define µ  :A  M/N M/N by  µ (a,x+N) =ax+N =a(x+N)
                Let  a,b R,x+N, y+N  M/N.
a((x+N)+(y+N)) =a (x+y+N)
                 =a(x+y)+N.
                 =ax+ay+N.
                                                    =(ax+N)+(ay+N)
                  a((x+N)+(y+N) =a(x+N)+a(y+N).
                   (a+b).(x+N) = (a+b) x +N.
                                       =ax + bx+N.
                                       =ax+N +bx+N.
              (a+b.(x+N) =a(x+N) + b(x+N)
              (ab) (x+N) = ab.x+N.                 
                                     =a(bx+N)
              (ab) (x+N) = a(b(x+N))
                    1.(x+N) = 1.x+N =x+N
    M/N is an R-module
Result:2.11
            The natural map of M onto M/N is an R-module homomophism.

Proof:
            Define : M   M/N by  (x) = x+N    x M
To prove  is a R-module homomophism.
            Let  x, y M   
  =x +y+N 
                 = x+N+y+N
(x)+
                          (ax)=ax+N
                 =a(x+N)
                 =a (x).
 is an R-module homomophism.
To prove   is onto.
            For every x+N  M/N,  x M such  that  (x) =x+N.
             : M→ M/N is an onto R-module homomophism.
Theorem:2.12
            Let : M → N be a homomophism of M onto N. Then the kernel of  ={x  M / (x) =0}is a submodule K of M and the quotient module M/K isomorphic to N.
Proof:
            Kernel of  = K= {x  M / (x) = 0}.
    Let  x,y  ker .
   Then (x)  =0, (y) =0.
                To prove x+y    ker
x+y) = (x) +  (y)
                 =0+0
 (x+y) =0
x+y  ker
To prove –x  ker
 (-x) =  (-1.x)
           = -1. (x)
          = -1.0
 (-x) = 0
-x  ker .
Hence  ker  is a subgroup of M.
To prove ax  ker
      (ax) =  a f(x)
                  =a.0
      (ax) = 0
ax ker  .
Kernel of  is a submodule of M .
    Define the map  M/K→N by (x+K) = (x), x  M.
Claim :  is well – defined.
    Let x+K , y+K  M/K.
           x+K = y+K
  x –y + K = K
  x – y  K  =  ker
  (x-y)  = 0
  (x) – (y) = 0
  (x) =  (y)
   (x+K) =  (y+K)
is well – defined and 1 – 1.
Claim: is  a homomorphism.
((x+K) + (y+K))  =  (x+y+K)
                                       =  (x+y)
                                       =  (x) + f (y)
                                       =  (x+K) + (y+K).
(a(x+K)) = (ax+K)
                        =   (ax)
                         = a   (x+K).
 is a homomophism.
Hence    is an is homomorphism.

   M/K    N
Theorom:2.13
       i.          I   L  M N are R-modules , then
     ii.          I   M1,M2  are submodules of M, then M1+M2/M1  M2/M1  M2.

Proof:
           (i)Given L M N are R-modules
 Define  : L/N à L/M by (x+N) = x+M    x+N L/N.

To prove  is well – defined
            Let  x+N, y+N  L/N such that  x+N =y+N
   (x-y) +N =N
    x –y N  M
 x –y  M
x –y +M =M
 x + M =y+M
              (x+N) =  (y+N)
   is well- defined.
 is onto
            or every x +M  L/M ,   x+ N   L/N  such that
            (x+N) = x+M.
  is  onto.
To prove   is   an R-module  homomorphism.
            Let x+N  y+N  Є L/N , a Є R.

 ((x+N) + (y+N)) =  ((x+y) +N ))
                                        = x+ y+ M
                                        = (x+M) +(y+M)
 ((x+N) +(y+ N)) =  (x+N) +  (y+N)

 (a(x+ N)) =  (a x +N)
                         = ax +M
                         =a(x +M)
                         = a  (x+N)
 is  an R-module  homomorphism.
            Hence    is an R-module  homomorphism of L/N onto L/M.
Claim:  ker  = M/N.
       Now  x +N Є ker
   (x+N) =M
 x+M =M
 x Є M
x+N Є M/N.
 Ker  = M/N.
 By fundamental theorem of homomorphism

(iii)         : M2 à M1+M2/M1 defined by  (x) =x+M1 where x Є M2.
            Let x, y Є M2 such that   x = y
 x-y=0
   (x-y) =  (0) = M1
 x –y +M1 =M1
 x+M1 = y + M1
   (x) =  (y)
   is well –defined.
To prove  is onto
Let  z +M Є M1 + M2/M1
                  Then z Є  M1+M2.
                 z =z1+z2 where z1 Є M1 z2 Є M2.
            z2 = z- z1 and
           (z2) = z – z1 +M1  = z+M1
 z2 Є M2 such that  (z2) =z+M1
 is onto .
To prove  is an R-modules homomorphism
            Let x, yЄ M2 , a Є R
          (x+y) =x+y+M1
                         =(x+M1 +(y+M1)
 (x+y) =  (x)+  (y)
 (ax) = ax +M1
                          =a (x+M1)
                          =a  (x)

Hence  is an R-module homomorphism  of M2 onto M1+M2/M1.
Claim : ker  = M1 M2.
x Є Ker      (x) = 0, x Є M2
                      x +M1 = M1, x Є M2.
                x Є M1 , X Є M2.
                    x Є M1  M2.
Ker  = M1  M2
M2/M1 M2  M1+M2/M1
Note :
If N and K are submodules of M then N  K is a submodule of M but N  K is not in general a  submodule of M.
Definition:2.14
          The smallest submodules of M containing N  K is called the submodule generated by N and K.

Theorem:2.15
        The submodule S generated by N and K is a submodule
N+K ={x+y/x Є N, y Є K}
Proof:
Clearly N + K is a submodule of M since N and K  are  submodules of  M.
Also N N +K and K N+ K so that  S N +K.
Conversely, for any x Є N , y Є K , we have x,y Є S so that x + y Є S.
Thus  N + K S.
Hence  S = N+ K.

Corollary :2.16
              If N1, N2,……,NK  are  submodules of  M, the submodule generated by N1,N2,…..NK is equal to
/xi Є Ni } = N1 +N2 +……..NK .



Definition:2.17
         Let A be  a subset of M and is denoted by IA.
         In particular if I= R and A ={x}, IA is denoted by Rx.
Definition:2.18
         An R-module M is called cyclic if M = Rx  for some x Є M.
Theorem:2.19
     An R-module M is cyclic iff M R/I  for some ideal I in R.
Proof:
         Suppose M is cyclic
M =Rx for some  x Є M.
Define the natural map   : R à M by   (a) = ax .
clearly  is surjective.
To prove    is a homomorphism
                Let  a, b Є R
     (a+b) =(a+b) x
                    =ax+bx
    (a+b)  =  (a) +(b)
    (αa)      =(αa)x
                    =α(ax)
 (αa)         (a) ,α Є R.
 is a homomorpohism.
        Hence  is a surjective homomorphism.


Let  I =ker .
     By fundamental theorem of homomorphism, we have R/I  M.
Conversely suppose M  R/I.
Since R/I is generated by  = 1 +I, R/I is cyclic.
Since R/I  M, M is cyclic.

Veg Special - சைவ உணவு

உளுந்து பாயாசம்

ரொம்ப ஒல்லியா இருக்கீங்களா இதை மட்டும் குடிங்க.

மருத்துவ குணம் நிறைந்த கற்பூரவள்ளியில் பஜ்ஜி செய்யலாமா?

சத்துமிக்க அவரைக்காய் வெந்தயக்கீரை பருப்பு கூட்டு

சத்தான காலை நேர உணவு.. அரிசி மாவு புட்டு!

சாஃப்ட் இட்லி: பிசுபிசுன்னு ஒட்டாமல் இருக்கும் ரகசியம் இதுதான்!

பல நோய்களை தீர்த்து, உடலுக்கு அற்புத ஆற்றலை வழங்கும் துளசி.!

பிசி பெலே பாத் - சாம்பார் சாதம் - செய்முறை (தமிழில்)

உடலில் உள்ள கெட்ட கொழுப்புகளை கரைக்க கூடிய உணவுகள்...!

இவ்வளவு மருத்துவ குணங்களை கொண்டுள்ளதா முருங்கைக் கீரை....?

எலுமிச்சை சாறு பருகுவதால் உண்டாகும் பயன்கள்...!

Veg Grilled Sandwich in Tamil with English Subtitles.

சர்க்கரை நோய் குணமாக இது ஒன்று போதும்!