Commutative Algebra chapter III


  Chapter-III
Free module

Definition:3.1
         The annihilator of an R-module M is defined as
                                Ann (M)  ={ a Є R /aM =0}.
Note:3.2
i)               Ann (M) is an ideal of R.
ii)             If M is cyclic and is generated by x, Ann(M)  denoted by Ann(x).
Definition:3.3
           M is called a faithful R - module if Ann (M) =(0)
Definition:3.4
            M  is called a finitely generated R –module if
M =M1 +M2+…….+Mn where each Mi is cyclic.
              If Mi =R xi; ,then {x1,x2,……., xn} is called as generating  set for  M
Example:3.5
            The module of polynomials over R of degree atmost n is generated by 1,X,X2,……Xn
1,1+X, X2,…..Xn is also a generating set for the same module .
 The generating set is not unique.
Definition:3.6
       M is called a direct  sum of submodules M1,M2,…..,Mn ,
if every xЄ M can be uniquely expressed as      
                  x =x1+x2+………..+xn, xi Є Mi ,1≤ i≤n.
The direct sum is denoted by M= M1 M2 ……. Mn.
Theorem :3.7
    An R-module M =M1 M2 ……. Mn  iff
i)                 M = M1 + M2 + ………. +Mn and
ii)               M i (M1 +M2 +…….+ M i -1 + M i+1 +……. +Mn) =0
for all i , 1≤ i ≤ n.

Proof :
             Suppose M = M1 M2 …… Mn.
 Then clearly (i) is true .
To prove (ii)
          Suppose x Є Mi  (M1 + M2+……+ M i-1 +M i + 1………Mn)
x Є M i and x Є M1 +M2 +……..+M i-1+M i+1+…… + Mn
 x Є Mi and x =y1 +y2 +…….y i -1 +  y i+1 +…..yn, yj Є Mj, j  i Since x= 0 + 0 +…….. +0 +x +0 +…..+ 0 with x is in the  ith place,
We have by uniqueness , x= 0.
         M i  (M1 +M2 +…….+M i-1 +M i+1 +……..+Mn) =0.
         Thus  (ii) is true.
          Conversely assume the conditions (i)  and (ii)
         By(i) each xЄ M can be expressed as x =x1 + x2 +……….. +xn , xi Є Mi.
          Suppose x =y1 +y2 +…+yn, y i Є M i
 Then  0 =(x1 –y 1) + (x2 – y2) +…….+(x i – yi) +……+ (xn –y n)
          so that  xi – yi Є Mi
 (xi– yi ) = - [(x1 –y1 ) + ……+(x i-1  - y i-1) + (x i+1 – y i+1) +……
                                                                                                               …..+ ( xn – yn )]
xi - yi Є M1 +M2 +……+ Mi -1 +M i+1 + …..+Mn.
 xi – yi Є M i  (M1 +M2+….+Mi-1 + Mi+1 +………Mn)
       By (ii) Mi  (M1 +M2 +……+Mi-1 +M i+1 +……Mn) = 0,
        x i – y i =0 ,
          x i =yi , 1≤ i≤ n.
        Hence  every xЄ M can be uniquely written as
        x = x1 + x2 +…….+xn , xi Є Mi, 1≤ i≤ n.
M = M1 M2 ……. Mn.
Definition:3.8
      If M= M1 M2, x Є M then x can be uniquely expressed as
       x =x1 +x2,  x1 Є M1, x2 Є M2.
      The mappings 1 : M à M1, M à M2   defined by
 1(x) =x1,  2(x) =x2 are called projections.
Remark :
       The definition of direct sum can be extended to any collection of modules.
        For, An R-module M is a direct sum of a  collection of   submodules {Mα} α Є I  if each  x Є M can be expressed uniquely as
x=  + +…..+ ,  Є , α12…..αnЄI
We denote this by M =  
Definition :3.9
  A cyclic R-module M = R x is called free if  Ann (x) =0.
Definition :3.10
         An R –module M is called free  if it can be expressed as a direct sum M =   where each M  α is  a free cyclic R-module.
   If M α =Rx α, then the collection {X α } is  called a basis of the free module M.

Examples:3.11
(i)            R n ={(a1,a2,……an) / ai Є R } is a free R-module with basis
e1 =(1,0,0,…..0) , e2 =(0,1,0,…..), en = (0,0,……0,1).
(ii)          Zn , the group of integers module n is not free Z-module as each
xЄ Zn has  a  non –zero annihilator.
   Theorem:3.12
               Any two basis of a free module have the same cardinality.
 Proof:
         Let M be a free module with basis {x α} αϵI
          Choose a maximal ideal m in R and let R /m=K
          Then V=M/mM is annihilated by m hence it is a k-vector space
         Let  α= x α + mM
Claim: {  α} is a basis of V over K
             Let α ί + mϵ R/M=k,  + Mm ϵV
           Now,  Σ (α ί +m) ( +mM) =0,  ί ϵK=R/M
                       Σ α ί +mM=0
                                Σ α ί  =0
                       α ί=0        αίϵI

Let  = x + mM ϵ V=M/mM, xϵM
Since xϵM, x= Σ α ί            x+mM= Σ α ί  +mM
                          = Σ (α ί +mM)
                          = Σ(α ί +mM) ( +mM)
                         = Σ  i( +mM)
                   = Σ  i
{ α } a basis of V over K
Since any two basis of a vector space have the same Cardinality, it follows that any two basis of a free module have the same cardinality.
Corollary:3.13                                                                                                  
               If a free module F has a basis with n elements, then any other basis of F also has   n elements
Definition 3.14
          If a free module F has a basis with n element. Then n is called the rank of F.
Example: 3.15
1.    A cyclic module M =Rx with Ann (x) =0 is free of rank one.
2.    The R-module Rn is a free of rank n.
3.    The R-module R[x] is free with basis {1,x,x2,….Xn,…}and has countable rank
Definition:3.16
           Let M and N are R-modules and let : M→N The image of f is the set  imf =  (M)
       The Cokernal of  is Coker ( ) =N/im  which is a quotient module of N.
Remark:3.17    
         Homomorphic image of a finitely generated module is also finitely generated.
         For, let : M→N be an   R-module Homomorphism which is onto.
         Suppose M is generated by x1, x2,….. .x n
         Let yϵN.
         Since  is onto, x M such that (x) = y.
         Since x1, x2……, x n generate M,  
         x= for some a1, a2……, an ϵR
         y= (x) =  ( )
                        = f(xi)
         (x1),…..,  (x n) generates N.  


Theorem: 3.18
          M is a finitely generated R-module iff  M is isomorphic to a quotient of  R n for some integer n>0.
 Proof:
         Suppose M is a finitely generated R-module.
          Let x1, x2,…… x n generate M.
         Define : Rn → M by  (a1, a2,…,. an) =a1x1+a2x2+.., +an x n
Now,  ((a1, a 2,…, an) + (b1, b2,…, b n)) =  ((a1+b1,…., an +b n))
                                                       = (a1+b1) x1+ (a2+b2) x2+….+ (an +b n) x n
                                                                                      = (a1x1+a2x2+…+a n x n) + (b1x1+b2x2+bnxn)
                                                      =  (a1, a2…, an) +  (b1, b2…, b n)
 (a (a1, a2…, an) =  (aa1+aa2+…+aa n)
                            = (aa1) x1+ (aa2) x2+…+ (aa n) x n
                                         =a (a1x1+a2x2+…+an x n)
                                         =a  (a1, a2…, a n)
 is an R-module homomorphism.
 Clearly  is onto since x1, x2, …….x n generate M.
Thus  is a R-module homomorphism from Rn onto M.
          M  Rn/ker .
 Conversely suppose M Rn/ker  for some R-module homomorphism of R n onto M.
To prove M is a finitely generated R-module.
 Let e ί = (0, …,0,1, 0, 0) Є Rn
Now e ί   generate R n.
 since  is an R-module homomorphism, of R n onto M
    (e ί), 1≤ί≤n generate M.
 Hence M is a finitely generated R-module.
Remark:
       Any  R-module M can be expressed as the quotient of a free 
R- module F.                           

Veg Special - சைவ உணவு

உளுந்து பாயாசம்

ரொம்ப ஒல்லியா இருக்கீங்களா இதை மட்டும் குடிங்க.

மருத்துவ குணம் நிறைந்த கற்பூரவள்ளியில் பஜ்ஜி செய்யலாமா?

சத்துமிக்க அவரைக்காய் வெந்தயக்கீரை பருப்பு கூட்டு

சத்தான காலை நேர உணவு.. அரிசி மாவு புட்டு!

சாஃப்ட் இட்லி: பிசுபிசுன்னு ஒட்டாமல் இருக்கும் ரகசியம் இதுதான்!

பல நோய்களை தீர்த்து, உடலுக்கு அற்புத ஆற்றலை வழங்கும் துளசி.!

பிசி பெலே பாத் - சாம்பார் சாதம் - செய்முறை (தமிழில்)

உடலில் உள்ள கெட்ட கொழுப்புகளை கரைக்க கூடிய உணவுகள்...!

இவ்வளவு மருத்துவ குணங்களை கொண்டுள்ளதா முருங்கைக் கீரை....?

எலுமிச்சை சாறு பருகுவதால் உண்டாகும் பயன்கள்...!

Veg Grilled Sandwich in Tamil with English Subtitles.

சர்க்கரை நோய் குணமாக இது ஒன்று போதும்!